Package: mmibain 0.2.0.9000
mmibain: Bayesian Informative Hypotheses Evaluation Web Applications
Researchers often have expectations about the relations between means of different groups or standardized regression coefficients; using informative hypothesis testing to incorporate these expectations into the analysis through order constraints increases statistical power Vanbrabant and Rosseel (2020) <doi:10.4324/9780429273872-14>. Another valuable tool, the Bayes factor, can evaluate evidence for multiple hypotheses without concerns about multiple testing, and can be used in Bayesian updating Hoijtink, Mulder, van Lissa & Gu (2019) <doi:10.1037/met0000201>. The 'bain' R package enables informative hypothesis testing using the Bayes factor. The 'mmibain' package provides 'shiny' web applications based on 'bain'. The RepliCrisis() function launches a 'shiny' card game to simulate the evaluation of replication studies while the mmibain() function launches a 'shiny' application to fit Bayesian informative hypotheses evaluation models from 'bain'.
Authors:
mmibain_0.2.0.9000.tar.gz
mmibain_0.2.0.9000.zip(r-4.5)mmibain_0.2.0.9000.zip(r-4.4)mmibain_0.2.0.9000.zip(r-4.3)
mmibain_0.2.0.9000.tgz(r-4.4-any)mmibain_0.2.0.9000.tgz(r-4.3-any)
mmibain_0.2.0.9000.tar.gz(r-4.5-noble)mmibain_0.2.0.9000.tar.gz(r-4.4-noble)
mmibain_0.2.0.9000.tgz(r-4.4-emscripten)mmibain_0.2.0.9000.tgz(r-4.3-emscripten)
mmibain.pdf |mmibain.html✨
mmibain/json (API)
# Install 'mmibain' in R: |
install.packages('mmibain', repos = c('https://mightymetrika.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/mightymetrika/mmibain/issues
bayes-factorbayesianhypothesisinformativestatistics
Last updated 5 months agofrom:273d7b187f. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 23 2024 |
R-4.5-win | OK | Oct 23 2024 |
R-4.5-linux | OK | Oct 23 2024 |
R-4.4-win | OK | Oct 23 2024 |
R-4.4-mac | OK | Oct 23 2024 |
R-4.3-win | OK | Oct 23 2024 |
R-4.3-mac | OK | Oct 23 2024 |
Exports:BF_for_everyoneBFfedeal_cards_to_rc_gridgenerate_Ho_from_pairwise_tgenerate_study_datainterpret_replication_resultsmmib_modelmmibainprocess_original_studyprocess_replication_studyRepliCrisisswapper
Dependencies:abindbackportsbainbase64encbootbroombslibcachemcarcarDataclassclicolorspacecommonmarkcowplotcpp11crayoncrosstalkDerivdigestdoBydplyrDTe1071evaluatefansifarverfastmapfontawesomeFormulafsgenericsggplot2glueGPArotationgtablehighrhtmltoolshtmlwidgetshttpuvigraphisobandjquerylibjsonliteknitrlabelinglaterlatticelavaanlazyevallifecyclelme4magrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminqammcardsmnormtmodelrmunsellnlmenloptrnnetnumDerivpbivnormpbkrtestpillarpkgconfigpromisesproxypsychpurrrquadprogquantregR6rappdirsRColorBrewerRcppRcppEigenrlangrmarkdownsassscalesshinyshinythemessourcetoolsSparseMstringistringrsurvivaltibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunxtableyaml
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Compute Bayes Factors for Each Participant and Summarize Results | BF_for_everyone |
Shiny Application for Setting Up and Running Bayes Factors for Each Participant | BFfe |
Deal Cards to a RepliCrisis Grid | deal_cards_to_rc_grid |
Generate Null Hypothesis from Pairwise t-test Results | generate_Ho_from_pairwise_t |
Generate Study Data for RepliCrisis | generate_study_data |
Interpretation of Replication Study Results | interpret_replication_results |
Fit Statistical Models for MMI Bain Processing | mmib_model |
mmibain Shiny App | mmibain |
Process Original Study Data for Analysis | process_original_study |
Process Replication Study Data | process_replication_study |
RepliCrisis Shiny App | RepliCrisis |
Card Matrix Swapping Function | swapper |